
Runtime Goal Selection with Oversubscribed Resources

Gregg Rabideau and Steve Chien

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Dr, Pasadena, CA 91109

firstname.lastname@jpl.nasa.gov

Abstract

We describe an online planning algorithm and its use for
selecting goals at runtime. Our focus is on the re-planning
that must be performed in a short time-frame by the
embedded system where computational resources are quite
constrained. In particular, our algorithm addresses problems
with well-defined goal requests without temporal flexibility
that oversubscribe available resources. By using a fast,
incremental algorithm, goal selection can be postponed in a
“just-in-time” fashion allowing requests to be changed or
added at the last minute. This enables shorter response
cycles and greater autonomy for the system under control.

Introduction

We address the problem of providing high-level, goal-
based autonomy for computationally limited robotic
systems. Specifically, we enable on-board and remote goal
triggering through the use of an embedded, dynamic goal
set that can oversubscribe resources. From the set of
conflicting goals, a subset must be chosen that maximizes a
given quality metric.
 In our first prototype instantiation, we assume that the
requested goals have fixed start times and durations,
making this a goal selection problem rather than a
scheduling problem. Goals can conflict by exceeding
limitations of shared resources (e.g. oversubscription). The
quality metric we use in our initial prototype is strict
priority selection. In other words, a goal can never be pre-
empted by a lower priority goal. High-level goals can be
added, removed, or updated at any time, and the “best”
goals will be selected for execution.
 In addition, we provide robust and flexible execution of
command sequences to satisfy goals with shared resources.
Once we have committed to a given high-level goal, it
must be broken down to the low-level commands
understandable by the various subsystems (similar to
hierarchical task network planning). However, rather than
using rigid sequences with fixed command start times, we
allow specification of flexible sequences that can be altered

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

to accommodate run-time variations in the use of the
resources.
 We develop these capabilities as prototype extensions to
the Virtual Machine Language (VML) [Grasso 2008]
execution system. VML is advanced, multi-mission flight
and ground software developed for NASA flown on a
number of past and current missions including: The Spitzer
Space Telescope, Mars Odyssey, Stardust, Genesis, Mars
Reconnaissance Orbiter, Phoenix, and Dawn. The
prototype concept of a resource constraint is added to the
language for both planning and execution purposes. A new
VML task, the Goal Manager (GM), maintains the set of
requested goals, their priorities, and their interactions (i.e.
shared resource constraints). When a goal is submitted, the
GM task quickly analyses the goal to determine whether or
not it should be selected for execution. When the current
time approaches the scheduled start time of a selected goal,
the goal is satisfied by spawning the corresponding VML
sequences. At this point, we are committed to the goal, and
normal VML processing takes over.
 The motivation for our work came from scenarios for
operating the Earth Observing One satellite [GSFC],
specifically from operations conducted by the Autonomous
Sciencecraft (ASE) flight and ground software [Chien et al.
2005]. We demonstrate our prototype implementation on
these scenarios. In our approach, goal selection is
postponed until the latest possible time, allowing goals to
be added, removed or changed just prior to execution. This
dynamic goal set enables additional autonomy capabilities
such as on-board and ground-based event triggering,
similar to ASE. For example, images taken of the Earth can
be processed on-board to detect interesting events such as
volcanic eruptions. These detections can then trigger
changes to upcoming goals such as increasing the priority
of requests for images of the same volcano. On the ground,
sensorweb processing may detect similar events and
upload new goal requests in a short time frame.
 In these scenarios, start times of goals are assumed to be
fixed. This is a reasonable assumption due to the nature of
a spacecraft in orbit – opportunities for communications
and science observations occur at specific (repeating)
times. Also, we have found that many spacecraft resource
constraints can be abstracted to the goal level. For
example, the EO-1 spacecraft can point science
instruments to only one target at a time. Thus, for target

locations in close proximity, we must choose one of
possibly many observation goals. We take advantage of
these assumptions to develop efficient algorithms that
provide advanced onboard autonomy capabilities.

Resource Constraints

A resource constraint is a value and a bound on that value
over a period of time. Resource constraints exist as part of
goals, activities, or sequences. A combination of effects of
constraints on the same resource conceptually comprises a
timeline (although we do not maintain an explicit
representation of a timeline). Resource constraints have the
following attributes:

ResourceConstraint

 <IdType, TimeType, ValueType>

{

 IdType id;

 ResourceType type;

 TimeType start;

 TimeType end;

 ValueType value;

 ValueType initial;

 ValueType min;

 ValueType max;

}

The id uniquely identifies the affected resource for the
purpose of analyzing the interaction with other resource
constraints. The type specifies the type of effect that the
constraint has on the resource. The time range specifies the
temporal scope of the constraint. The last four values
specify, respectively: the constraint value, the initial value
of the resource in the absence of all constraints, the
minimum valid resource value, and the maximum valid
resource value.
 There are four fundamental types of resource
constraints:

enum ResourceType

{

 Producer,

 Consumer,

 Assigner,

 Requirement

}

A producer adds the constraint value to the resource at the
start of the time range and subtracts it at the end (where the
end may be infinity). A consumer subtracts at the start and
adds at the end. An assigner simply assigns the constraint
value at a specific time point. A requirement specifies only
a constraint on the value of the resource over a period of
time (i.e. it has no effect on the resource value).

Resource Values and Operators

A resource constraint can be defined for any type of value
as long as the following set of operators is available:

 += (used for producers)

 -= (used for consumers)

 = (used for assigners)

 < (used for validity check)

 == (used for validity check)

These operators allow us to compute resource values from
a set of interacting resource constraints, as well as to test
for the validity of computed resource values. For example,
for a single producer, we would add the produced value to
the initial value and compare the result to the maximum
value. If the constraint check fails, the resource value is
considered invalid (i.e. has conflicting constraints).
 We have demonstrated six common types of resource
values:

 int

 double

 string

 set<int>

 set<double>

 set<string>

The definitions of the operators are intuitive for simple
types such as integers, doubles, and strings. For sets, we
define them as follows: addition (+=) is set union,
subtraction (-=) is set subtraction, assignment (=) replaces
all values in one set with values from another, less (<) is a
lexicographical ordering on two sets, and equals (==)
returns true if the sets are of equal size and each element in
one set is equal to exactly one element in the other set.
 For set resources, we introduce another operator for set
containment. This allows us to specify a constraint that
requires the computed resource value (which is a set of
values) to contain the constraint value.

Resources at Runtime

Even with fast dispatching algorithms, sequences must be
issued in advance of their requested execution time, and
the state of the system may change in the interim.
Therefore, at execution time we want to prevent or
postpone an activity or sequence from executing if that
activity/sequence requires resources that are not yet
available. To achieve this, we implement runtime resource
constraints using a generalization of counting semaphores.
 A counting semaphore works as follows. A global count
is initialized to the number of units available for a
resource. A task can acquire (take) a resource if the count
is greater than zero, and in the same operation, the count is
decremented. If the resource is not available (i.e. the count
is zero), then the task will block until it becomes available.
When a task is finished with the resource, it can release
(give) the resource by incrementing the count. For

example, a binary semaphore (i.e. mutex) can be
implemented using the commonly found atomic instruction
test-and-set:

bool TestAndSet(bool* lock);

TestAndSet will take the resource by assigning lock to
true if and only if it is currently false. Otherwise, it will
simply return true. We can later give back the resource by
assigning lock to false.
 More generally, consuming a resource is similar to
acquiring a semaphore, but with a specified amount to be
consumed, and with a specified bound on the resulting
resource value after consumption. Execution on the calling
task will block until bounding condition is met. A change
in either the resource value or the restricting bounds will
trigger a check on the condition. Producing a resource is
similar to releasing a semaphore, but including the
conditional check found in acquiring a semaphore.
Resource production also has specified values for the
amount to produce and the bounds on the resulting
resource value. In this way, resource consumption and
production only differ in the direction in which the
resource is changed (decreased or increased, respectively).
 For resources, we define atomic runtime operations for:
producing, consuming, assigning, and checking a resource
value. For the first three, in which the resource value is
changed, the change will not occur until the given bounds
cover the changed value. The resource check operation
simply blocks the calling task until the resulting resource
value will fall within the given bounds. In all cases, an
optional timeout can be given to continue execution even
when the resource constraint is not met. These operations
must be atomic (i.e. non-interruptible) in order to guarantee
that the resource value will not change by another task
between the time that the bounding constraint is checked
and the resource value is changed.
 The four atomic resource operations are defined as
follows:

bool ResourceProduce(IdType id,

 ValueType val,

 ValueType min,

 ValueType max,

 TimeType t = 0);

bool ResourceConsume(IdType id,

 ValueType val,

 ValueType min,

 ValueType max,

 TimeType t = 0);

bool ResourceAssign(IdType id,

 ValueType val,

 ValueType min,

 ValueType max,

 TimeType t = 0);

bool ResourceCheck(IdType id,

 ValueType min,

 ValueType max,

 TimeType t = 0);

id is a reference to the shared resource. val is the amount
to be produced, consumed or assigned to the resource. min
and max specify the bounding constraint on the resulting
value. t is the amount of time that the operation will be
delayed for the bounding constraint. The functions return
true if the bounding constraint was met and the operation
performed. They return false if the bounding constraint
was not met, the timeout was reached, and the resource
operation was not performed. Using optional timeout
values allows us to implement waits with interrupts instead
of spin loops.

Goals

A goal represents the request for execution of an activity or
sequence. Goals have the following attributes:

Goal

 <IdType, TimeType, PriorityType>

{

 IdType id;

 PriorityType priority;

 TimeType start;

 TimeType end;

 set<ResourceConstraint> constraints;

}

The id is used to uniquely identify the goal. The goal
priority is used to rank goals. The start and end
values specify the expected temporal scope of the goal.
Due to system uncertainties at the time the goal is
requested, the start and end times contain only the
requested or expected values. Goals also maintain a set of
resource constraints that must hold for the goal to execute.
Similar to the start and end times, resource constraints
contain the requested or expected values for the resources.
 The goal attributes are used for selecting and dispatching
goals for execution. In addition, a goal must specify what
is to be done when it dispatched. Typically, this involves
spawning a sequence to start execution at a given time.
Essentially, we define goals as a summary of the intent and
effects of one or more sequences.

Example: File System

When defining goals and resources, we worked to find a
balance between a representation that is general and
powerful, but also has the details required for efficient
resource analysis and goal selection. We show the power
of the representation with an example: controlling a file
system. This example is of particular interest to us because

// goal for creating a file

FileHandleResource::FileHandleResource(Producer, end, 1));

 resources.insert(new FileMemoryResource::FileMemoryResource(Consumer, start, size));

 : Resource<int, int, int>(2, type, time, infinity, value, 1024, 0, 1024){}

// resource constraint for the current set of files on disk

FileSetResource::FileSetResource(ResourceType type, int time, set<int> value)

 : Resource<int, int, set<int> >(3, type, time, infinity, value, {}, {}, {infinity}){}

// resource constraint to prevent reads and writes from overlapping

FileReadWriteResource::FileReadWriteResource(int start, int end)

 : Resource<int, int, int>(4, Producer, start, end, 1, 0, 0, 1){}

Figure 1

// goal for creating a file

FileHandleResource::FileHandleResource(ResourceType type, int time, int value)

 : ResourceConstraint<int, int, int>(1, type, time, infinity, value, 100, 0, 100){}

// resource constraint for the 1024 available Kbytes of memory

FileMemoryResource::FileMemoryResource(ResourceType type, int time, int value)

 : ResourceConstraint<int, int, int>(2, type, time, infinity, value, 1024, 0, 1024){}

// resource constraint for the current set of files on disk

FileSetResource::FileSetResource(ResourceType type, int time, set<int> value)

 : ResourceConstraint<int, int, set<int>>(3, type, time, infinity, value, {}, {},

{infinity}){}

// resource constraint to prevent reads and writes from overlapping

FileReadWriteResource::FileReadWriteResource(int start, int end)

 : ResourceConstraint<int, int, int>(4, Producer, start, end, 1, 0, 0, 1){}

Figure 2

many spacecraft (including EO-1) must deal with
managing data products on an onboard file system.
Typically, science activities write data to the file system
while engineering procedures read from files for downlink
and delete files to free up space.
 First, the user has several goals that can be requested of
the file system: create, delete, read, write, and format.
Also, the file system has the following resource
constraints: there is a limited number of file handles, there
is limited disk space, performing an operation on a file
requires that it exist on the file system, and finally, some
operations cannot be done at the same time.
 We can model this file system with five goals and four
resource constraints, shown in pseudo C++ code in Figures
1 and 2. A general resource constraint constructor takes 8
arguments to specify values for the 8 attributes: id, type,
start, end, value, initial, min and max. A
subclass is defined for each of the 4 resource constraints in
this example. A general goal constructor takes 4 arguments
to specify values for the first 4 goal attributes: id,
priority, start, and end. A subclass is defined for
each of the 5 goal types in this example.

 Each goal subclass constructor creates and adds the
resource constraints for that goal type. Creating a file
consumes one of the 100 available file handles, and
produces a file with the specified unique ID. Deleting a file
produces a file handle while consuming the file with the
specified unique ID. It also produces file memory (1024K
capacity) equal to the size of the file. Writing to a file
consumes available memory equal to the size of the data
written. Both writing and reading require that the unique
file ID is a member of the set of available file IDs, and that
no other reads or writes occur at the same time.
 Each goal subclass also defines the required method for
executing the goal. For example, the FileCreateGoal
might call fopen() on a Unix operating system.

Goal Selection Algorithm

We present an algorithm for selecting goals with
oversubscribed resources. The pseudo-code is shown in
Figure 3. The algorithm can be categorized as a repair-
based approach with no search – the constraints and

priorities define exactly which goals to choose. We focus
on the re-selection that is required when the requested goal
set changes, either by adding a new goal or removing an
existing goal

1
. While making selections, goal parameter

values (e.g. start times) are assumed to be fixed. The result
is a set of non-conflicting “best” goals that have been
selected for execution. After selections are made,
conflicting goals are retained for additional consideration
in the event of future changes to the goal set. In this
implementation, conflicts are defined by shared resource
interactions, and choices are made among conflicting goals

1
Changing parameters of a goal (e.g. start time, priority)

can be implemented by removing the goal and adding it

back with new values.

using a strict priority rule. Only the highest priority goals
are selected, with ties broken by earliest request time (i.e.
first-come-first-served).
 The dispatch algorithm maintains data structures that
allow imminent, selected goals to be found efficiently. One
set of goals is sorted by start time so that it can quickly
find the next goal to dispatch. For each goal, the algorithm
maintains a set of interacting goals (i.e. share a resource)
so that it can quickly determine whether or not a goal
should be selected. The goals are also sorted by priority so
that the algorithm can focus on only the interacting goals
that are higher priority. A goal will be selected and
dispatched for execution if and only if it does not conflict
with a higher priority goal, which does not conflict with an
even higher priority goal, etc. For example, in Figure 4 we

 1 void dispatch(minStart, maxStart)

 2 for each Goal g in allGoalsSortedByTime

 3 with startTime(g) >= minStart and startTime(g) <= maxStart

 4 if g is in selectedGoals

 5 start(g)

 6

 7 void addGoal(Goal g)

 8 for each Goal ag in allGoals

 9 if g interacts with ag

10 add g to interacting goals of ag

11 add ag to interacting goals of g

12 add g to allGoals, allGoalsSortedByTime, and allGoalsSortedByPriority

13 updateSelectedGoals(g)

14

15 void removeGoal(Goal g)

16 remove g from allGoals, allGoalsSortedByTime, and allGoalsSortedByPriority
17 updateSelectedGoals(g)

18 for each Goal ag in allGoals

19 remove g from interacting goals of ag

20

21 void updateSelectedGoals(g)

22 for each Goal sg in selectedGoals

23 with priority <= priority of g

24 remove sg from selectedGoals

25 for each Goal ag in allGoalsSortedByPriority

26 with priority <= priority of g

27 if wasStarted(ag) or isBestGoal(ag, selectedGoals)

28 add ag to selectedGoals

29

30 bool isBestGoal(g, selectedGoals)

31 initialize each Resource used by g

32 add affects of g to each Resource used by g

33 for each Goal ig in interacting goals of g

34 if ig is in selectedGoals

35 for each Resource r shared by ig and g

36 add affects of ig to r

37 if r is invalid

38 return false

39 return true

Figure 3

assume that overlapping goals conflict. Goal C is highest
priority and is selected. Goal B is not selected because it
conflicts with C. Because B is not selected, goal A is
selected even though it is lower-priority than B. Therefore,
goals A and C are the “best” goals.

 Looking at the pseudo-code, adding and removing a goal
each has 3 parts: updating the sets of interacting goals
(lines 8-11 and 18-19), updating the sorted goal sets (lines
12 and 16), and updating the selected goal set (lines 13 and
17). When updating the selected goal set, we first de-
conflict the schedule by removing all goals with lower
priority than the goal being added or removed (lines 22-
24). Higher priority goals are unaffected and can remain
selected. Next, we re-evaluate each of the lower-priority
goals (lines 25-28). Evaluating a goal g involves adding
the resource effects of g to the effects of all selected (i.e.
higher-priority) goals that interact with g (lines 31-36). If
the combined resource effects are invalid, then g will not
be selected (lines 37-38). Finally, dispatching goals within
a given time range simply involves finding selected goals
that fall in the range (lines 1-5). The dispatch function is
intended to be called periodically with a small time range
falling in the near future.
 The low-priority conflicting goals are retained so that
changes to the goal set can be made at any time (goals
added, removed, or updated), and goals will be dispatched
from the latest set of selected goals. Once a goal has started
executing (determined by the “wasStarted” function on line
27) it will thereafter be selected regardless of priority. A
goal expires if it is unselected and falls in the past, or if it
is selected and all of its interacting goals completely fall in
the past. Expired goals are periodically removed from the
goal sets (details not shown in pseudo-code). As a final
note, the definition of “interacting” could be any arbitrary
function that takes a pair of goals as input, and returns true
or false. In this work, resources define which goals
interact.

Algorithm Analysis

We now describe the run-time computational complexity
of our goal selection algorithms. Selecting the best goals
and updating the cache (lines 21-39) is:

 O(MlgM + N(lgM + Xi(lgM + Si)))

where N is the number of all goals, M is the number of
selected goals, Xi is the number of interacting goals for
goal i, and Si is the number of resources shared by goal i.
Goals are stored in tree data structures with a log-based

lookup. The first term comes from removing lower-priority
goals from the selected goals (lines 22-24). The longer
second term comes from re-selecting the best goals (lines
25-39).
 Assuming worst case, where each goal interacts with
every other goal (Xi == N for all i), each goal uses all
resources (Si == R for all i), and all goals are selected
(M == N):

 O(NlgN + N(lgN + N(lgN + R)))

Or:

 O(NlgN + NlgN + N2lgN + N2R)

Since N2lgN dominates NlgN:

 O(N2lgN + N2R)

And assuming that N >> R, we have:

 O(N2lgN)

This is a theoretical worst case complexity. In practice,
each goal will typically use a subset of the resources, and
many of the goals will not be selected for execution. More
importantly, goals interact with a small number of other
goals (Xi is constant) due to the temporal scope of the
resource constraints (i.e. effects on resources have limited
extent). This gives us:

 Θ(NlgN)

Finally, this selection process is performed only when
goals are added (line 13) or removed (line 17) from the
dispatcher, which is assumed will be done at non-critical
times.
 Once we have cached the best goals, checking a specific
goal is a simple lookup in the set. So dispatching a selected
goal for execution (lines 1-5) is:

 O(lgN + lgM)

The first term is from the lookup for goals due for
execution (lines 2-3) which we assume to be small
(typically one). The second term is from the lookup in the
set of selected goals (line 4). Assuming worst case, where
all goals are selected (M == N), we get:

 O(lgN)

Algorithm Assumptions, Limitations, and

Requirements

We make several assumptions to keep the goal selection
algorithm simple and efficient.

Goal A priority=1

Goal B priority=2

Goal C priority=3

Figure 4

• We do not solve the general planning problem. We
only decide which high level goals should be
selected. We do not search for alternate methods of
achieving the high level goals. While less powerful,
this tends to be more accepted by spacecraft
engineers who prefer consistency and predictability.
The tasks of goal decomposition and command
execution are left to an executive or sequencing
engine (e.g. VML). These systems can be very
expressive and allow goals to be expanded in a
complex, context-dependent manner.

• We do not solve the general scheduling problem. We
only decide on which subset of the provided set of
goals and activities to add to the plan, not on when
they should be scheduled. Goals and activities must
be submitted with predetermined start times. As an
example, for an orbiting spacecraft with repeating
science opportunities, this restricted form of
planning can select which observation to perform on
an orbit, but can not select an alternate overflight for
a particular observation.

• We are only reasoning at the goal level. Resource
reasoning is performed on goal resources which are
assumed to be abstractions of the expected use of
resources by the lower-level commands. We found
this abstraction useful for many of the EO-1
resource constraints

• We also assume that goals are ranked using the strict
priority rule. In other words, any number of low-
priority goals can be trumped by a high-priority
goal. When goals have equal priority, the goal that
was requested first will take precedence (i.e. first-
come-first-served). EO-1 scientists were most
comfortable with this simple priority scheme.

It is worth pointing out that even with these restrictive
assumptions the capabilities we are offering far exceed
what is available on typical spacecraft today, either
implemented in general commanding capabilities or
custom flight software. Specifically, they are capable of
representing the goal replacement capabilities currently
operational in ASE.
 Providing goal selection capabilities places some
requirements on users when defining goals compared to
defining activities or sequences strictly for the purpose of
execution. First, users must provide some form of selection
criteria. In our case, this is a priority for the goal. The user
must also specify a summary of the expected resource
usage for each goal. Where resource use at runtime may be
intricate or even implicit, goal resources force the user to
define resource use in an explicit and predictable way.
Finally, users must provide an expected start and end time
for the activity or sequence requested by the goal. This is
necessary for predicting the scope of the resource use.

Planning and Execution with VML

Designed as a multi-mission application, VML is one of
the most advanced onboard execution systems in
widespread use for NASA missions [Grasso 2008].
Missions currently using VML include Odyssey, Spitzer,
Dawn, MRO, and Phoenix. On these missions, VML has
been used for a wide range of sequencing functions
including: launch routines, orbit insertion, entry-descent-
and-landing, science acquisition, and fault response.
 We have implemented goals, resources, and the goal
selection algorithm as prototype extensions to VML.
Runtime resources (generalized semaphores) are integrated
into existing VML sequence execution capabilities. A new
VML task, the Goal Manager (GM), implements the goal
selection algorithm, and calls the dispatch function
periodically. Finally, new user interface functions are
added to allow goals to be added, removed, or changed.
 At runtime, we ultimately need a set of executable
commands that achieve the selected goals. Using existing
VML 2.0 [Grasso 2004] capabilities, we employ a general
pattern to the language to enable goal achievement with
flexible and robust execution. Specifically, the language
pattern consists of defining hierarchies, preconditions and
effects familiar to the AI planning community. VML
sequences for a goal or activity call other VML sequences
that implement sub-activities or executable commands.
When appropriate, command execution can be delayed to
wait for the preconditions to be met, allowing more
flexible execution. Finally, effects of the commands are
monitored and appropriate responses can be defined to
recover from failures and provide more robust execution.

Autonomous Spacecraft Operations

Our work was motivated by scenarios taken from the
Autonomous Sciencecraft Experiment (ASE) used in
operating the Earth-Observing 1 (EO-1) satellite. A
prototype was implemented and tested on these scenarios.
Figure 5 shows the system diagram for the prototype. In
ASE scenarios, on-board science processing may generate
new goal requests [Chien et al., April 2005]. Ground-based
sensorweb processing may do the same using uplinked
commands [Chien et al., June 2005]. We simulate goal
request changes using a time-tagged file containing the
change specifications. The EO-1 model consists of VML
functions that implement activities for operating EO-1,
including collecting and downlinking science data. The
system was run on a typical EO-1 collect-downlink cycle
where on-board resources (e.g. science data storage) are
oversubscribed. At runtime, a simple spacecraft simulator
was used to mimic command behavior, including effects
on resources. We have not yet run formal benchmarking
experiments, but anecdotally the additional processing
required for goal selection does not seem to have a
significant impact on performance.

 We also studied planning and
sequencing problems from the Mars
Reconnaissance Orbiter (MRO) and
the Mars Exploration Rover (MER)
missions. From these, we identified
several scenarios that might benefit
from this technology. First, we
examine a data relay scenario,
where low-priority MER data can
be sent to Earth via MRO (Figure
6). Initially, MRO can not service
the downlink relay because it is
collecting high priority science data.
MER would check for signal, fail,
and continue doing something else
(e.g. take observations). However,
if before the MER fly-over, an
MRO anomaly makes the MRO
science collect goal obsolete, the
downlink relay would become
possible. MER would check for
signal, succeed, and both would
initiate sequences necessary to relay
the low-priority MER data. This
scenario requires a dynamic goal set
to allow the high-priority (but
failed) science collect goal to be
replaced by the low-priority
downlink goal.
 Next, we consider another data

relay scenario, where critical MER engineering data must
be sent to Earth as soon as possible (Figure 7). Initially,
MRO has science goals planned, and goals for MER relay
opportunities are stored on-board MRO at low-priority. At
some point, an anomaly on MER creates the need to
downlink high-priority data. On the next MER fly-over,
MER would indicate the change in priority for the next
relay opportunity. Assuming this is higher priority than the
MRO science, MRO would replace the science goal with
the MER relay goal. Again, a dynamic goal set is necessary
for this type of scenario.
 Finally, we consider a change in an MRO science
request initiated by the science team (Figure 8). MRO
maintains requests in an Integrated Target List (ITL) where
each line/item in an ITL has a reference to a file describing
the science request. Data volume is a major driver for
science requests. With more available storage, scientist
might choose longer durations or higher resolutions (i.e.
larger image size). On-board software could automatically
analyze the data volume, choose better parameters for the
target, and replace the science request file referenced by
the ITL. Changes to parameters may require constraints to
be re-checked, and/or other sequences to be adjusted to
make the change fit. This demonstrates a need for both a
dynamic goal set and flexible execution. The ephemeris is
a driver for the CRISM science instrument on MRO
because of its scanning mechanism. Changes in
orbit/ephemeris require changes to parameters used for

Goal Manager

EO-1 FSW
(simulator)

VML
Core

EO-1
Model

commands

spawn block cmds

Science ManagerSensorweb

Agents

Science

Processing

goal requests

goal

requests

science

alerts

Flight

Ground

Goal Manager

EO-1 FSW
(simulator)

VML
Core

EO-1
Model

commands

spawn block cmds

Science ManagerSensorweb

Agents

Science

Processing

goal requests

goal

requests

science

alerts

Flight

Ground

Figure 5

observation, priority=3

MER relay, priority=2

MRO relay, priority=2

observation, priority=1

observation, priority=3

MER relay, priority=2

MRO relay, priority=2

observation, priority=1

MRO

MER

MRO

MER

MRO observation failure

observation, priority=3

MER relay, priority=2

MRO relay, priority=2

observation, priority=1

observation, priority=3

MER relay, priority=2

MRO relay, priority=2

observation, priority=1

MRO

MER

MRO

MER

MRO observation failure

Figure 6: Blue indicates selected goals, yellow is

rejected, and red is failed.

pointing the instrument. Parameter calculations on the
ground can be triggered from ephemeris changes,

automatically generating a new file uplink request, and
changing the on-board goal set.

Related Work

Much of the research in planning and goal selection has
focused on more general, intractable problems. For
example, [Smith 2004] looks at the more general problem
that includes selecting goals and choosing their order when
resource usage depends on the order of the goals (e.g., for a
traveling rover). Both the Squeaky Wheel Optimization
[Joslin and Clements 1999] and the Task Swapping
[Kramer and Smith 2004] algorithms have been shown to
improve oversubscribed schedules by re-scheduling tasks
to allow more goals to fit. Instead, we look at a more
constrained problem that can be solved in polynomial time,
while still providing advanced autonomy capabilities
useful for many embedded applications.
 A considerable amount of work has been done in the
area of online planning and execution. We list some of the
implemented systems here. For example, SCL [ICS]
provides a procedural language for spacecraft commanding
similar to VML. VML blocks and the constructs they use
are very similar to SCL scripts and constructs. Both
provide functions, conditionals, variables, and loops. SCL,
however, has a large component that allows the user to

build and maintain a telemetry database. This is
outside the scope of our work, which instead focuses
on intelligent commanding.
 ESL [Gat 1996] is an execution language for
autonomous agents, implemented as an extension to
the Common Lisp programming language. Therefore,
programs in ESL can include any of the constructs
provided by Lisp. Instead, we extend the VML
feature set to include constructs similar to some
found in ESL. By maintaining a limited set of
features, we hope to contain the effort required to
verify programs or sequences.
 TDL [Simmons et al.] extends the C++
programming language to include the concept of a
task. Like ESL, programs in TDL can take advantage
of the generic language on which they are based.
Providing such a rich language, however, has a cost
when it comes to verifying programs written in that
language. The capabilities we propose, while not as
powerful, are similar to some provided by the TDL
task types and constraints.
 Titan [Williams et al. 2003] and Kirk [Kim et al.
2001] are model-based executives. That is, they use a
declarative specification of system behavior (plant
model) to track system state and compute desired
sequences of control actions. Titan combines a
deductive controller (evolved from Livingstone, a
mode-identification and reconfiguration capability

flight validated on DS-1 [Williams and Nayak, 1996]) with
a procedural state-based control sequencing module that
allows for the specification of desired system state

observation, priority=3

MER relay, priority=2

MRO relay, priority=2

observation, priority=1

observation, priority=3

MER relay, priority=4

MRO relay, priority=4

observation, priority=1

MRO

MER

MRO

MER

MER anomaly, relay priority increased

observation, priority=3

MER relay, priority=2

MRO relay, priority=2

observation, priority=1

observation, priority=3

MER relay, priority=4

MRO relay, priority=4

observation, priority=1

MRO

MER

MRO

MER

MER anomaly, relay priority increased

Figure 7: Blue indicates selected goals, yellow is

rejected, and red is failed.

obs2, priority=2, resolution=1

MRO

First observation uses less data than expected,

replace second observation with higher resolution

obs1, priority=2, resolution=1

data collected

current time

obs2, priority=2, resolution=1

MRO

obs1, priority=2, resolution=1

current time

data collected

obs2, priority=1, resolution=2obs1, priority=1, resolution=2

obs2, priority=3, resolution=2obs1, priority=1, resolution=2

obs2, priority=2, resolution=1

MRO

First observation uses less data than expected,

replace second observation with higher resolution

obs1, priority=2, resolution=1

data collected

current time

obs2, priority=2, resolution=1

MRO

obs1, priority=2, resolution=1

current time

data collected

obs2, priority=1, resolution=2obs1, priority=1, resolution=2

obs2, priority=3, resolution=2obs1, priority=1, resolution=2

Figure 8: Blue indicates selected goals and yellow is rejected.

trajectories. By coupling deductive reasoning capabilities
with the task control capabilities of an advanced procedural
sequencer, the resulting executive demonstrates greater
flexibility, fault-awareness and robustness than purely
procedural executives. The Kirk executive provides
additional capabilities for reasoning about activity-level
contingencies, scheduling, and path planning.
 The Mission Data System (MDS) [Dvorak et al. 1999,
Barrett et al. 2004] is a comprehensive approach to systems
engineering and a methodology for the design and
development of control system applications. Our goals and
resources are similar to the concepts of goals and state
variables that are central to MDS. MDS goals express
intent of the operator over a time interval, while MDS state
variables are used to model both the system under control
and the intent of the control system.

Future Directions and Conclusions

This work targets development and maturation of more
advanced onboard resource reasoning capabilities to be
available to future space missions via VML. While the
more typical orbital mission operations could benefit from
onboard resource reasoning, future mission to dynamic
environments would benefit even more. For example,
future missions to a comet would need to reason about
state and resources to exploit observation of transient
events such as outbursts and jets. Round trip light times
for such bodies means that ground control would not be
timely enough to protect the spacecraft from these
potentially hazardous events nor would it enable the
spacecraft to image these exciting scientific events.
 We have described a carefully constrained set of
resource and priority reasoning capabilities designed to
enable run-time planning within a limited computational
environment. This capability enables fast incremental
selection of goals oversubscribing available resources in a
strict priority order. We have presented a computational
complexity analysis of these algorithms as well as
described its application to a number of typical spacecraft
operations scenarios.

Acknowledgements

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. A special thanks to Chris Grasso for VML
software and support.

References

A. Barrett, R. Knight, R. Morris, R. Rasmussen, Mission
Planning and Execution Within the Mission Data System,
International Workshop on Planning and Scheduling for
Space (IWPSS), Darmstadt, Germany, June 2004.

 S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau,
R. Castano, A. Davies, D. Mandl, S. Frye, B. Trout, S.
Shulman, D. Boyer, Using Autonomy Flight Software to
Improve Science Return on Earth Observing One, Journal
of Aerospace Computing, Information, and
Communication, April 2005.
 S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R.
Castano, R. Sherwood, D. Mandl, S. Frye, S. Shulman, J.
Jones, S. Grosvenor, An Autonomous Earth-Observing
Sensorweb, IEEE Intelligent Systems, May/June 2005.
 D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks.
Software architecture themes in JPL's Mission Data
System. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, number AIAA-99-4553, 1999.
 E. Gat. ESL: A language for supporting robust plan
execution in embedded autonomous agents. AAAI Fall
Symposium: Issues in Plan Execution, Cambridge, MA,
1996.
 Goddard Space Flight Center, The Earth Observing One
Mission Page, eo1.gsfc.nasa.gov.
 C. Grasso. Virtual Machine Language (VML) v2.0
Users Guide. JPL Document, D-28342, June 2, 2004.
 C. Grasso, P. Lock. VML Sequencing: Growing
Capabilities over Multiple Missions. In Proceedings of
SpaceOps 08. Heidelberg, Germany. May 2008.
 Interface and Control Systems (ICS), Inc.,
http://www.interfacecontrol.com
 D. E. Joslin and D. P. Clements, “Squeaky Wheel”
Optimization, Journal of Artificial Intelligence Research
(1999), 10:353-373.
 P. Kim, B. Williams, and M. Abramson. Executing
reactive, model-based programs through graph-based
temporal planning. In Proceedings of the International
Joint Conference on Artificial Intelligence, 2001.
 Kramer, L. A., and Smith, S. F., Task swapping for
schedule improvement, a broader analysis. In Proc. 14th
Int’l Conf. on Automated Planning and Scheduling, 2004.
 R. Simmons and D. Apfelbaum. TDL Quick-Reference
Manual (v1.3.2). http://www-2.cs.cmu.edu/~tdl/tdl.html,
2002.
 B.C. Williams, M.D. Ingham, S.H. Chung, and P.H.
Elliott. Model-based Programming of Intelligent
Embedded Systems and Robotic Space Explorers. In
Proceedings of the IEEE, Special Issue on Modeling and
Design of Embedded Software, Vol. 91, No. 1, Jan. 2003,
pp. 212-237.
 B.C. Williams and P.P. Nayak. A Model-based
Approach to Reactive Self-Configuring Systems. In
Proceedings of the AAAI-96, pp. 971-978, 1996.

